M ar 2 01 4 A FRAME THEORETIC APPROACH TO THE NON - UNIFORM FAST FOURIER TRANSFORM ∗
نویسندگان
چکیده
Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the non-uniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various investigations have led to improvements in accuracy, efficiency, and robustness of the NFFT, not much attention has been paid to the fundamental analysis of the scheme, and in particular its convergence properties. This paper analyzes the convergence of the NFFT by casting it as a Fourier frame approximation. In so doing, we are able to design parameters for the method that satisfy conditions for numerical convergence. Our so called frame theoretic convolutional gridding algorithm can also be applied to detect features (such as edges) from non-uniform Fourier samples of piecewise smooth functions.
منابع مشابه
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملAR spectral analysis of EEG signals by using maximum likelihood estimation
In this study, EEG signals were analyzed using autoregressive (AR) method. Parameters in AR method were realized by using maximum likelihood estimation (MLE). Results were compared with fast Fourier transform (FFT) method. It is observed that AR method gives better results in the analysis of EEG signals. On the other hand, the results have also showed that AR method can also be used for some ot...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملPathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملA robust sub-linear time R-FFAST algorithm for computing a sparse DFT
The Fast Fourier Transform (FFT) is the most efficiently known way to compute the Discrete Fourier Transform (DFT) of an arbitrary n-length signal, and has a computational complexity of O(n log n). If the DFT ~ X of the signal ~x has only k non-zero coefficients (where k < n), can we do better? In [1], we addressed this question and presented a novel FFAST (Fast Fourier Aliasing-based Sparse Tr...
متن کامل